Globally Optimal Multisensor Distributed Random Parameter Matrices Kalman Filtering Fusion with Applications

نویسندگان

  • Yingting Luo
  • Yunmin Zhu
  • Dandan Luo
  • Jie Zhou
  • Enbin Song
  • Donghua Wang
چکیده

This paper proposes a new distributed Kalman filtering fusion with random state transition and measurement matrices, i.e., random parameter matrices Kalman filtering. It is proved that under a mild condition the fused state estimate is equivalent to the centralized Kalman filtering using all sensor measurements; therefore, it achieves the best performance. More importantly, this result can be applied to Kalman filtering with uncertain observations including the measurement with a false alarm probability as a special case, as well as, randomly variant dynamic systems with multiple models. Numerical examples are given which support our analysis and show significant performance loss of ignoring the randomness of the parameter matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Fusion Receding Horizon Filtering in Linear Stochastic Systems

This paper presents a distributed receding horizon filtering algorithm for multisensor continuous-time linear stochastic systems. Distributed fusion with a weighted sum structure is applied to local receding horizon Kalman filters having different horizon lengths. The fusion estimate of the state of a dynamic system represents the optimal linear fusion by weighting matrices under the minimum me...

متن کامل

Receding Horizon Filtering for Mobile Robot Systems with Cross-Correlated Sensor Noises

This paper reports on a receding horizon filtering for mobile robot systems with cross-correlated sensor noises and uncertainties. Also, the effect of uncertain parameters in the state of the tracking error model performance is considered. A distributed fusion receding horizon filter is proposed. The distributed fusion filtering algorithm represents the optimal linear combination of the local f...

متن کامل

Applications of Random Parameter Matrices Kalman Filtering in Uncertain Observation and Multi-Model Systems

This paper considers the Linear Minimum Variance recursive state estimation for the linear discrete time dynamic system with random state transition and measurement matrices, i.e., random parameter matrices Kalman filtering. It is shown that such system can be converted to a linear dynamic system with deterministic parameter matrices but state-dependent process and measurement noises. It is pro...

متن کامل

State Fusion Estimation Based on Asynchronous Multirate Multisensor

On theory of multisensor state fusion estimation, more research is a single rate synchronization problem, however, it is the multirate asynchronous problem often encountered in practice. Therefore, research on the state fusion estimation of asynchronous multirate multisensor have more practice application value. In this paple, by expand the dimension of the system state and measurements and by ...

متن کامل

Multisensor Distributed Fusion Wiener Deconvolution Estimator for Linear Stochastic Multichannel ARMA Signal

Multisensor distributed fusion Wiener deconvolution estimator is presented in this paper. It does not need to solve the Diophantine equation, and the steady-state Kalman filter gain of the augmented system. It can handle processing of nonstationary signal. White noise estimator and A strom predictor are used in the algorithm. Gevers-Wouters (G-W) algorithm is also used in this paper. In order t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008